NAVAL POSTGRADUATE SCHOOL Monterey, California

PROBABILISTIC MODELING OF COMMON CHANNEL SIGNALING

Donald P. Gaver
Patricia A. Jacobs

September 1991

Approved for public release; distribution is unlimited.
Prepared for:
Defense Communications Agency
Reston, VA 22070

FedDocs
D 208.14/2
NPS-OR-91-028

NAVAL POSTGRADUATE SCHOOL, MONTEREY, CALIFORNIA

Rear Admiral R. W. West, Jr.
Superintendent

This report was prepared in conjunction with research funded by the Defense Communications Agency, Reston, Virginia.

This report was prepared by:

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

Form Approved OMB No. 0704-0188

$\overline{1 a .}$	REPORT SECURITY CLASSIFICATION UNCLASSIFIED		ib. RESTRICTIVE MARKINGS			
$\overline{\text { 2a. }}$	SECURITY CLASSIFICATION AUTHORITY	DULE	3. DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release; distribution is unlimited.			
4.	PERFORMING ORGANIZATION REPORTN NPSOR-91-028	MBER(S)	5. MONITORING ORGANIZATION REPORT NUMBER(S)			
$\overline{6 a}$	NAME OF PERFORMING ORGANIZATION Naval Postgraduate School	6b. OFFICE SYMBOL (If applicable) OR	7a. NAME OF MONITORING ORGANIZATION Defense Communications Agency			
$\overline{6 c .}$	ADDRESS (City, State, and ZIP Code) Monterey, CA 93943		7b. ADDRESS Reston,	$\begin{aligned} & \text { City, State, an } \\ & \text { VA } 2207 \end{aligned}$		
$\overline{8 a}$	NAME OF FUNDING/SPONSORING ORGANIZATION Defense Communications Agency	8b. OFFICE SYMBOL (If applicabte)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
$\overline{8 C}$	ADDRESS (City, State, and ZIP Code) Reston, VA 22070		10. SOURCE OF FUNDING NUMBERS			
			PROGRAM ELEMENT NO	$\begin{aligned} & \text { PROJECT } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { TASK } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \hline \text { WORK UNIT } \\ & \text { ACCESSION NO. } \end{aligned}$

11. TITLE (Include Security Classification)

Probabilistic Modeling of Common Channel Signaling
12. PERSONAL AUTHOR(S)

Donald P. Gaver, Patricia A. Jacobs, and J. P. Lehoczky

13a. TYPE OF REPORT
Technical Report 13b. TIME COVERED FROM TO TO
14. DATE OF REPORT (Year, month day)
15. PAGE COUNT
16. SUPPLEMENTARY NOTATION
18. SUBJECT TERMS (Continue on reverse if necessary and Identify by block number) Delays in common channel signaling; circuit-switched network; $M / G / 1$ queue approximation
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report details preliminary models for a common-channel signaling system that sets up and tears down voice calls in a circuit-switched network. The initial Sections 1-3 present alternative detailed models for a single link between circuit-switched nodes. Section 4 outlines a heuristic procedure for calculating delays in a network; it makes use of an $M / G / 1$ queueing approximation partially justified earlier. The simple illustrative problem addressed suggests approaches to a realistic network.

2. DISTRIBUTION/AVAILABILITY OF ABSTRACT 2. UNCLASSIFIEDUNLIMITED \square SAME AS RPT. \square DTIC USERS	21. ABSTRACT SECURITY CLASSICIATION UNCLASSIFIED	
?2a. NAME OF RESPONSIBLE INDIVIDUAL D. P. Gaver	$\begin{aligned} & \text { 22b. TELEPHONE (Include Area Code) } \\ & \text { (408) 646-2605 } \end{aligned}$	$\begin{aligned} & \text { 2c. OFFICE SYMBOL } \\ & \text { OR/Gv } \\ & \hline \end{aligned}$

PROBABILISTIC MODELING OF COMMON CHANNEL SIGNALING

 byD. P. Gaver and P. A. Jacobs Naval Postgraduate School
J. P. Lehoczky
Carnegie-Mellon University

Abstract and Summary

This report details preliminary models for a common-channel signaling system that sets up and tears down voice calls in a circuit-switched network. The initial Sections 1-3 present alternative detailed models for a single signaling link between circuit-switched nodes. Section 4 outlines a heuristic procedure for calculating delays in a signaling network; it makes use of an M/G/1 queueing approximation partially justified earlier. The simple illustrative problem addressed in Section 4 suggests approaches to a realistic network.

1. INTRODUCTION

Common channel signaling is an out-of-band signaling method in which several data and / or voice channels use a common data channel to transmit signaling information; [cf. Skoog [1990]]. The demand for the signaling channel is generated by activity on the data and/or voice channels. For voice channels, examples of signals are call-setup messages and call-tear-down messages.

In this paper we introduce several different probability models for common channel signaling on the link between two connected nodes (switches). All the models represent the common signaling channel as a single server; cf. CCITT Study Group XI [1984]. A customer arriving at the server requires several types of services, somewhat spaced out in time. There is an initial service, such as a voice call setup, which must be completed before the customer can use the voice/data network. After completion of this initial service, however, the customer does not require further service from the common channel server (CCS) for a period perhaps approximately equal to the call length, but, after such a random time the customer will require another type of service from the CCS. Both service requests impose load on the CCS, thus increasing delays.

Assumptions

In this preliminary discussion we will assume that each arriving customer requires two types of service: an initial call setup service which requires a time X; and, after a period of time, a call tear-down service which requires a time Y. These services are assumed to be independent with fixed distributions. It is interesting to inquire as to whether the distribution of X at
least should depend upon the current network state, i.e. the difficulty of call setup.

In Section 2, a model is studied for the work at one common channel signaling server. The model allows the distributions of X and Y to be arbitrary. Equations for the moment generating function of the amount of work are given. A simple approximation is proposed for the long run average amount of work at the server. Simulation is used to study the effect of simplifying assumptions in the model and the approximation. In Section 3, two simple queueing network models for one common channel signaling server are described; the models have a product form limiting distribution. In Section 4 a simple example is given to illustrate how the approximation of Section 2 for one common channel server may be used to study a common channel signaling network. Appendix B briefly examines the possibility of using a specific voice/data network model, the CSNDAM, to generate loads for a common channel signaling network model.

2. A MODEL FOR THE AMOUNT OF WORK AT THE COMMON CHANNEL SERVER

There are two service centers. One service center is a single server queue representing the common channel server. The service discipline is first-come-first-served. The second service center consists of K servers and represents calls in progress.

Customers arrive according to a Poisson process with rate λ. The $n^{\text {th }}$ call to arrive requires two service times from the CCS, X_{n} and Y_{n}. Assume $\left\{X_{n}\right\}$ and $\left\{Y_{n}\right\}$ are independent sequences of independent identically distributed random variables. The distribution of X_{n} will, in general, be different from
that for Y_{n}. The $n^{\text {th }}$ call also requires a service time C_{n} from the second service center. Assume $\left\{C_{n}\right\}$ are independent identically distributed exponential with mean $1 / v$.

To simplify the state space of the initial model, we make the following assumptions: if a customer arrives when all K servers in the second service center are busy, the customer is lost. If a customer arrives when there is at least one free server at service center 2 , then it immediately queues at the CCS for an X-service. It also simultaneously starts a C-service at service center 2. This assumption is made for convenience: a C-service is actually a call, which cannot begin until the setup is complete, i.e. when the call completes its X service. However, dutiful modeling at this level of detail complicates the state space (at least one must keep track of the numbers of each type of job in the queue and make an assumption concerning the type-setup or tear down-receiving service). In our model, after a customer finishes a C-service, it queues up at the CCS for a Y-service. When its Y-service is completed the call is finished. In this initial model it is conceptually and actually possible for a call to be completed (finish its C-service) before its setup (X -service) has been finished. The effect is minor when $E[X] « 1 / v$, as is the case in practice. Adjustment to the model can be made to compensate for this effect but as previously noted dimension of the model state space is expanded.

Let W_{t} be the total amount of work at the CCS at time t. Let N_{t} be the number of busy servers at service center 2 . Note that $\left\{N_{t ;} t \geq 0\right\}$ is the number of customers in a $M / M / K / K$ queue and its long-run marginal distribution is given by

$$
\begin{equation*}
\pi(n)=\lim _{t \rightarrow \infty} P\left\{N_{t}=n\right\}=\pi(0)\left(\frac{\lambda}{v}\right)^{n} \frac{1}{n!} \quad n=0,1, \ldots, K \tag{21}
\end{equation*}
$$

with $\pi(0)=\left[\sum_{n=0}^{K}\left(\frac{\lambda}{v}\right)^{n} \frac{1}{n!}\right]^{-1}$; that is, it is truncated Poisson.
a. A System of Equations for the Laplace Transform of the Amount of Work at the CCS

Let

$$
Q_{n}(\theta ; t)=E\left[e^{-\theta W_{t}} ; N_{t}=n\right]
$$

Forward differential equations can be written for $\left\{Q_{k}(\theta ; t)\right\}$. For example,

$$
\begin{align*}
Q_{0}(\theta ; t+h) & =E\left[e^{-\theta W_{t+h}} ; N_{t+h}=0\right] \\
& =\left\{E\left[\exp \left\{-\theta\left[W_{t}-h\right]\right\} ; N_{t}=0, W_{t}>h\right]+P\left\{W_{t}<h, N_{t}=0\right\}\right\}[1-\lambda h] \\
& +E\left[\exp \left\{-\theta\left(Y+W_{t}-h\right)\right\} ; N_{t}=1\right] v h+o(h) \\
& =A(t ; h)[1-\lambda h]+\hat{Y}(\theta) Q_{1}(\theta ; t) v h+o(h) \tag{2.2}
\end{align*}
$$

where

$$
A(t ; h)=e^{\theta h} E\left[e^{-\theta W_{t}} ; N_{t}=0, W_{t}>h\right]+P\left\{W_{t}<h ; N_{t}=0\right\}
$$

and $\hat{Y}(\theta)=E\left[e^{-\theta Y}\right]$ is the Laplace transform of a Y-service time. Let $F_{0}(x ; t)=P\left\{W_{t} \leq x ; N_{t}=0\right\}$.

$$
\begin{aligned}
A(t ; h) & =e^{\theta h} \int_{h}^{\infty} e^{-\theta x} F_{0}(d x ; t)+F_{0}(h ; t) \\
& =e^{\theta h} Q_{0}(\theta ; t)-e^{\theta h} \int_{0}^{h} e^{-\theta x} F_{0}(d x ; t)+\int_{0}^{h} F_{0}(d x ; t) \\
& =e^{\theta h} Q_{0}(\theta ; t)-e^{\theta h}\left[p_{0}(0 ; t)+\int_{0}^{h}+e^{-\theta x} F_{0}(d x ; t)\right]+p_{0}(0 ; t)+\int_{0^{+}}^{h} F_{0}(d x ; t)
\end{aligned}
$$

$$
\begin{align*}
& =e^{\theta h} Q_{0}(\theta ; t)-p_{0}(0 ; t)\left[1-e^{\theta h}\right]+\int_{0^{+}}^{h}\left(1-e^{\theta(h \cdot x)}\right) F_{0}(d x ; t) \\
& =(1+\theta h) Q_{0}(\theta ; h)-\theta h p_{0}(0 ; t)+o(h) \tag{2.3}
\end{align*}
$$

where $p_{n}(0 ; t)=P\left\{W_{t}=0, N_{t}=n\right\}$.
Thus, rewriting (2.2)

$$
\begin{align*}
Q_{0}(\theta ; t+h) & =[1-\lambda h]\left\{(1+\theta h) Q_{0}(\theta ; t)-\theta h p_{0}(0 ; t)\right\} \\
& +v h \hat{Y}(\theta) Q_{1}(\theta ; t)+o(h) \tag{2.4}
\end{align*}
$$

Simplifying

$$
\begin{equation*}
Q_{0}(\theta ; t+h)=[1-(\lambda-\theta) h] Q_{0}(\theta ; t)-\theta h p_{0}(0 ; t)+v h \hat{Y}(\theta) Q_{1}(\theta ; t)+o(h) \tag{2.5}
\end{equation*}
$$

Subtracting $Q_{0}(\theta ; t)$ from both sides of the last equation, dividing by h and letting $h \rightarrow 0$ results in the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} Q_{0}(\theta, t)=-(\lambda-\theta) Q_{0}(\theta ; t)+\nu \hat{Y}(\theta) Q_{1}(\theta ; t)-\theta p_{0}(0 ; t) \tag{2.6}
\end{equation*}
$$

Similar arguments result in the following system of equations.

$$
\text { For } 1 \leq n<K
$$

$$
\begin{align*}
\frac{\partial}{\partial t} Q_{n}(\theta ; t) & =-(\lambda+n v-\theta) Q_{n}(\theta ; t)+(n+1) v \hat{Y}(\theta) Q_{n+1}(\theta ; t) \tag{2.7}\\
& +\lambda \hat{X}(\theta) Q_{n \cdot 1}(\theta ; t)-\theta p p_{n}(0 ; t) \\
\frac{\partial}{\partial t} Q_{K}(\theta ; t) & =-(K v-\theta) Q_{K}(\theta ; t)+\lambda \hat{X}(\theta) Q_{K \cdot 1}(\theta ; t)-\theta p_{K}(0 ; t) \tag{2.8}
\end{align*}
$$

where

$$
p_{n}(0 ; t)=P\left\{W_{t}=0, N_{t}=n\right\}
$$

as before and

$$
\hat{X}(\theta)=E\left[e^{-\theta X}\right]
$$

the Laplace transform of an X-service time.

Assume $Q_{n}(\theta)=\lim _{t \rightarrow \infty} Q_{n}(\theta ; t)$ exists. The system of equations satisfied by $\left\{Q_{n}(\theta)\right\}$ are

$$
\begin{equation*}
\theta p_{0}(0)=-(\lambda-\theta) Q_{0}(\theta)+v \hat{Y}(\theta) Q_{1}(\theta) \tag{2.9}
\end{equation*}
$$

for $0<n<K$,

$$
\begin{equation*}
\theta p_{n}(0)=\lambda \hat{X}(\theta) Q_{n \cdot 1}(\theta)-(\lambda+n v-\theta) Q_{n}(\theta)+(n+1) v \hat{Y}(\theta) Q_{n+1}(\theta) \tag{2.10}
\end{equation*}
$$

and $\quad \theta p_{K}(0)=\lambda \hat{X}(\theta) Q_{K \cdot 1}(\theta)-(K v-\theta) Q_{K}(\theta)$
where $p_{n}(0)=\lim _{t \rightarrow \infty} P\left\{W_{t}=0, N_{t}=n\right\}$.
Let $\mathfrak{p}(0)$ be a column vector whose $n^{\text {th }}$ entry is $p_{n}(0)$. Let $\underline{Q}(\theta)$ be a column vector whose $n^{\text {th }}$ entry is $Q_{n}(\theta)$. let $D(\theta)$ be a square matrix with $(K+1)$ rows with nonzero entries possible only on the lower diagonal, diagonal, and upper diagonal and with i, j entries $D(i, j ; \theta)$ as follows:

$$
\begin{array}{ll}
D(k, k \cdot 1 ; \theta)=\lambda \hat{X}(\theta) & 1<k \leq K+1 \\
D(k, k ; \theta)=\theta-\lambda-(k-1) v & 1<k \leq K \\
D(1,1 ; \theta)=\theta \cdot \lambda & \\
D(K+1, K+1 ; \theta)=\theta \cdot K v & \\
D(k, k+1 ; \theta)=k v \hat{Y}(\theta) & 1 \leq k \leq K . \tag{216}
\end{array}
$$

The system of equations (2.9)-(2.11) can be rewritten as

$$
\begin{equation*}
\theta \underline{p}(0)=D(\theta) \underline{Q}(\theta) \tag{2.17}
\end{equation*}
$$

For an example of $D(\theta)$ for $K=2$, see Appendix A.
Let $\bar{N}_{n}(\theta)$ be the matrix $D(\theta)$ with the $n^{\text {th }}$ column replaced by the vector $\theta p(0)$. From Cramer's rule,

$$
\begin{equation*}
Q_{n}(\theta)=\frac{\operatorname{det}\left(\bar{N}_{n}(\theta)\right)}{\operatorname{det}(D(\theta))} . \tag{2.18}
\end{equation*}
$$

Since the columns of $D(0)$ sum to zero, $\operatorname{det}(D(0))=0$. Hence, a Taylor expansion of $D(\theta)$ about $\theta=0$ yields

$$
\begin{equation*}
\operatorname{det} D(\theta)=\sum_{k=1}^{\infty} \frac{\theta^{k}}{k!} \frac{d^{k}}{d \theta^{k}} \operatorname{det} D(0) \equiv \theta d(\theta) . \tag{2.19}
\end{equation*}
$$

Further $\operatorname{det} \bar{N}_{n}(\theta)=\theta b_{n}(\theta)$ where $b_{n}(\theta)$ is the determinant of the matrix $B_{n}(\theta)$ whose entries are the same as $D(\theta)$ except that its $n^{\text {th }}$ column is $p(0)$. Thus

$$
\begin{equation*}
Q_{n}(\theta)=\frac{b_{n}(\theta)}{d(\theta)} \tag{2.20}
\end{equation*}
$$

b. A Stability Condition

A stability condition for the queue can be obtained from the equation

$$
\begin{equation*}
1=\sum_{n=0}^{K} Q_{n}(0)=\frac{1}{d(0)} \sum_{n=1}^{K+1} b_{n}(0) . \tag{2.21}
\end{equation*}
$$

In Appendix A it will be shown that

$$
\begin{equation*}
\sum_{n=1}^{K+1} b_{n}(0)=(-1)^{K}\left(\sum_{k=0}^{K} p_{k}(0)\right) \sum_{i=0}^{K} i!\binom{K}{i} \lambda^{K \cdot i} v^{i} \tag{2.22}
\end{equation*}
$$

and

$$
\begin{align*}
d(0)=(-1)^{K-1}\{\lambda E[X] & {\left[\left[\sum_{i=1}^{K}\binom{K}{i} i!\lambda^{K-i} v^{i}\right]\right] \cdot\left[\sum_{i=0}^{K}\left(i_{i}^{K}\right) i \lambda^{K-i} v^{i}\right] } \\
& \left.+v E[Y]\left[\sum_{i=0}^{K-1}(K-i)\binom{K}{i} i!\lambda^{K-i} v^{i}\right]\right\} . \tag{2.23}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\left.\left[\sum_{k=0}^{K} p_{k}(0)\right]=\left[\sum_{i=0}^{K} i \eta_{i}^{K}\right) \lambda^{K-i} v^{i}\right]^{-1}[-d(0)] . \tag{2.24}
\end{equation*}
$$

Since $0<\sum_{k=0}^{K} p_{k}(0)<1$, it follows that

$$
\begin{equation*}
0<\sum_{i=0}^{K}\binom{K}{i} i!\lambda^{K-i} v^{i} \cdot\left[\lambda E[X] \sum_{i=1}^{K}\binom{K}{i} i!\lambda^{K-i} v^{i}+v E[Y] \sum_{i=0}^{K-1}(K-i)\left(i_{i}^{K}\right) i!\lambda^{K-i} v^{i}\right](\tag{225}
\end{equation*}
$$

Rewriting (2.25), a stability condition is

$$
\begin{equation*}
\sum_{i=0}^{K}\binom{K}{i} i!\lambda^{K-i} v^{i}>\lambda E[X] \sum_{i=1}^{K}\binom{K}{i} i!\lambda^{K-i} v^{i}+v E[Y] \sum_{i=0}^{K-1}(K-i)\binom{K}{i} i!\lambda^{K-i} v^{i} . \tag{2.26}
\end{equation*}
$$

Note that when the stability condition is satisfied, $d(0)>0$ for K even and $d(0)<0$ for K odd.
c. A Numerical Procedure to Evaluate Long-run Average Work at the

Common Channel Server
The Laplace transform of the limiting amount of work at the CCS is

$$
\begin{equation*}
E\left[e^{\cdot \theta W}\right]=\sum_{n=0}^{K} Q_{n}(\theta)=\frac{1}{d(\theta)} \sum_{n=1}^{K+1} b_{n}(\theta) \equiv \frac{b(\theta)}{d(\theta)} . \tag{2.27}
\end{equation*}
$$

We conjecture that if the stability condition (2.26) is satisfied, then $d(\theta)$ has K positive distinct roots, $0<\theta_{1}<\theta_{2}<\ldots<\theta_{K}$. At each of these roots the equation

$$
\begin{equation*}
0=b\left(\theta_{i}\right) \quad i=1, \ldots, K \tag{2.28}
\end{equation*}
$$

is an equation involving $\left\{p_{n}(0) ; n=0,1, \ldots, K\right\}$. These equations in addition to the equation

$$
\begin{equation*}
1=\frac{b(0)}{d(0)} \tag{2.29}
\end{equation*}
$$

yield $(K+1)$ independent equations from which the $\left\{p_{n}(0)\right\}$ can be obtained.
To obtain an expression for $E[W]$ differentiate (2.27) with respect to θ and evaluate at $\theta=0$ which results in

$$
\begin{equation*}
E[W]=-\left[\frac{b^{\prime}(0) d(0)-b(0) d^{\prime}(0)}{d(0)^{2}}\right] \tag{2.30}
\end{equation*}
$$

The derivatives of the determinants of the matrices are computed as described in Appendix A.

A summary of the numerical procedure to compute $E[W]$ follows.

1. Check that the stability condition (2.26) is satisfied. If it is not satisfied stop. If it is satisfied continue.
2. Use a search procedure to find the K positive roots of $d(\theta)$.
3. Solve the system of equations (2.28)-(2.29) to find $\left\{p_{n}(0) ; n=0, \ldots, K\right\}$.
4. Evaluate (2.30) to find $E[W]$.
d. An Approximation for $E[W]$

In this subsection a simple approximation to the model of this section is described.

The limiting distribution of the $M / M / K / K$ queue is of the form

$$
\pi(n)=\pi(0)\left(\frac{\lambda}{v}\right)^{n} \quad n=0,1, \ldots, K
$$

We approximate the arrival process to the CCS from the $M / M / K / K$ queue by a Poisson process with having rate

$$
\begin{equation*}
v_{a}=v \sum_{n=0}^{K} n \pi(n) \tag{2.31}
\end{equation*}
$$

We further approximate the arrival process of outside customers to the CCS by a Poisson process having rate

$$
\begin{equation*}
\lambda_{a}=\lambda[1-\pi(K)] . \tag{2.32}
\end{equation*}
$$

The total arrival process of customers to the CCS is approximated by a Poisson process having rate $\lambda_{t}=v_{a}+\lambda_{a}$.

The approximate model of the CCS is an M/G/1 queue with arrival rate λ_{t} and with the service time distribution being the following mixture of the distributions of X and Y :

$$
\begin{equation*}
P\{S \leq t\}=\frac{\lambda_{a}}{\lambda_{t}} P\{X \leq t\}+\frac{v_{a}}{\lambda_{t}} P\{Y \leq t\} . \tag{2.33}
\end{equation*}
$$

The approximation to $E[W]$ is found using the Pollaczek-Khintchine formula

$$
\begin{equation*}
W_{a}=\frac{\lambda_{t} E\left[S^{2}\right]}{2\left(1-\lambda_{t} E[S]\right)} . \tag{2.34}
\end{equation*}
$$

The approximate probability that the CCS is idle is

$$
\begin{equation*}
P_{a}(\text { idle })=1-\lambda_{t} E[S]=1-\lambda_{a} E[X]-v_{a} E[Y] . \tag{2.35}
\end{equation*}
$$

e. A Comparison of Numerical Results

A simulation was constructed for the following model of one server in the common channel system. The common channel signaling system is again modeled as a single server with finite waiting room and first-come-firstserved service discipline. There is an $M / M / K / K$ queue to model the calls in progress. There is a maximum number of calls allowed in the entire system. Outside arrivals occur according to a Poisson process with rate λ. An outside arrival is lost if all K servers are busy or there is the maximum number of calls in the entire system. An outside arrival that is not blocked (possibly) queues
for an X-service by the CCS. After its X-service is completed it moves to the $\mathrm{M} / \mathrm{M} / \mathrm{K} / \mathrm{K}$ queue for a C-service. If all K services are busy the customer (call) is lost. After completion of a C-service, the customer queues at the CCS for an Y-service. When a customer's Y-service is completed, the customer leaves the system.

The simulation generates random numbers using LLRANDOM II [cf. Lewis et al. [1981]]. The average work in queue at the time of arrival of a nonblocked outside customer is computed. The fraction of time the CCS is idle is also computed.

Table I presents values for $E[W]$ obtained from the simulation, the model expression (2.30), and the approximate model expression (2.34). All the service times have exponential distributions. The outside arrival rate $\lambda=1$. The C-service times have mean $1 / v$ with $v=0.7$. Further, for all cases $E[X]=E[Y]$. For the simulation, the maximum number of customers in the entire system is 1000 . The simulation ran for 5000 outside customer arrivals (some of which were blocked). The probability of the CCS being idle is also recorded in Table I for the simulation, the model, and the model approximation.

TABLEI

		Average Amount of Work at CCS		P(Idle CCS)			
K	日 $X=E[Y$	Model	Approximation	Simulation	Model	Approximation	Simulation
2	$1 / 2$	1.22	1.19	1.31	0.30	0.30	0.29
3	$1 / 2$	4.01	3.55	2.38	0.12	0.12	0.15
4	$1 / 2$	14.67	11.33	9.13	0.04	0.04	0.04
2	$1 / 3$	0.30	0.29	0.40	0.53	0.53	0.53
3	$1 / 3$	0.50	0.47	0.51	0.42	0.42	0.43
4	$1 / 3$	0.68	0.59	0.63	0.36	0.36	0.35
5	$1 / 3$	0.80	0.64	0.67	0.34	0.34	0.32

All three models give about the same probability of CCS idleness. The values of $E[W]$ are also very similar for all three models. Further numerical experimentation is needed to study the differences among the three models.

3. QUEUEING NETWORK MODELS WITH PRODUCT FORM LIMITING DISTRIBUTION

In this section we describe two simple queueing network models for one server in the signaling network in the spirit of Baskett, et al. [1975]. Queueing network models, while appealing, are often difficult to analyze unless their limiting distribution is of product form. We describe two such models below.

There are two customer types: type 1 is a call setup service and type 2 is a call tear-down service. Outside customers arrive as type 1 customers to the single server CCS.

When a type 1 customer completes service at the CCS, he instantaneously goes to service center 2. Service center 2 is an infinite server queue and represents the calls in progress on the voice/data network; note that we impose no finite limit, K, as was done in the earlier model. The service times at service center 2 are independently and identically distributed. When a customer completes service at service center 2, he becomes a type 2 customer and returns to the CCS. After the customer completes his type 2 service, the customer leaves the system.

In the remainder of this section, we describe two queueing network models whose limiting distributions are of product form. The reader may consult Baskett et al. [1975] to obtain ideas for model generalizations and gain
some insight into the nature of the modeling restrictions imposed by requiring a product form limiting distribution.

a. Open Network-FCFS Service at the CCS

In this model outside customers arrive according to a Poisson process with rate λ. Type i services at the CCS are independently and identically distributed exponential with mean $1 / \mu$; that is, both call setup and call teardown distributions must have the same mean in this model, which is a restriction. Service times at the infinite-server queue are independent identically distributed exponential with mean $1 / v$.

Let $X_{t}(i)$ be the number of customers of type i waiting or being served at the CCS at time t and let N_{t} be the number of customers at Service Center 2 (SC2). It is well known, cf. Baskett et al. [1975], that if $2 \lambda<\mu$

$$
\begin{gather*}
\pi\left(n_{1}, n_{2}, m\right)=\lim _{t \rightarrow \infty} P\left\{X_{t}(1)=n_{1}, X_{t}(2)=n_{2}, N_{t}=m\right\} \\
=\left[1-\frac{2 \lambda}{\mu}\right]\left[\begin{array}{l}
n_{1}+n_{2} \\
n_{1}
\end{array}\right)\left(\frac{\lambda}{\mu}\right)^{n_{1}+n_{2}} e^{-\lambda / v} \frac{\left(\frac{\lambda}{v}\right)^{m}}{m!} \tag{3.1}
\end{gather*}
$$

for n_{1}, n_{2}, m nonnegative integers.
If the mean service times for type 1 and type 2 customers are not the same, then the limiting distribution will not necessarily be of a product form.

In this model, standard calculations yield that the long run average wait in queue of an ariving type customer to the CCS is $(1 / \mu) \lim _{t \rightarrow \infty} E\left[X_{t}(1)+X_{t}(2)\right]=(1 / \mu)((2 \lambda / \mu) /(1-2 \lambda / \mu))$ which is the same as the long run average waiting time in queue for an arriving type 2 customer.

To allow for different service time distributions for type 1 and type 2 customers and still have a limiting distribution which is of product form, the service discipline at the CCS must be something like processor-sharing; [cf. Baskett et al. [1975]] which we describe in the next subsection.
b. An Open Queueing Network with Processor Sharing Service

The assumptions for this model are the same as before. However type i services are independent identically distributed exponential with mean $1 / \mu_{i}$. A customer's type 1 and type 2 services are independent of each other. Further, the service discipline at the CCS is processor-sharing. Using the same notation as above, if $\rho=\lambda\left[\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}\right]<1$, then

$$
\begin{equation*}
\pi\left(n_{1}, n_{2}, m\right)=C\binom{n_{1}+n_{2}}{n_{1}}\left(\frac{\lambda}{\mu_{1}}\right)^{n_{1}}\left(\frac{\lambda}{\mu_{2}}\right)^{n_{2}}\left(\frac{\lambda}{v}\right)^{m} \frac{1}{m!} e^{-(\lambda / v)} \tag{3.2}
\end{equation*}
$$

where $C=[1-\rho]$ and n_{1}, n_{2} and m are nonnegative integers; cf. Baskett et al. [1975].

In this model standard calculations show that the long-run average wait in the CCS queue of an arriving type 1 customer is

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\{\frac{1}{\mu_{1}} E\left[X_{t}(1)\right]+\frac{1}{\mu_{2}} E\left[X_{t}(2)\right]\right\}=[1 \cdot \rho]^{-1}\left(\frac{\lambda}{\mu_{1}^{2}}+\frac{\lambda}{\mu_{2}^{2}}\right) \equiv W_{Q}^{1} . \tag{3.3}
\end{equation*}
$$

Further the total time spend waiting in queue in the entire system for an arriving type 1 customer is

$$
\begin{equation*}
\frac{\rho}{1 \cdot \rho}\left[\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}\right]=W_{Q}^{T} . \tag{3.4}
\end{equation*}
$$

Hence, the waiting time in queue at the CCS for an arriving customer of type 2 is

$$
\begin{equation*}
W_{Q}^{2}=W_{Q}^{T}-W_{Q}^{1}=[1-\rho]^{-1} \frac{2 \lambda}{\mu_{1} \mu_{2}} . \tag{3.5}
\end{equation*}
$$

Closed queueing network models similar to models a and b above may be described in a similar manner.

4. A MODEL FOR A COMMON CHANNEL SIGNALLING NETWORK

In this section we describe an example to illustrate an initial model for a common channel signalling network (CCSN). This network is in service to a circuit switching network. The example forms the groundwork for a fullscale model associated with a real network.

The CCSN has several characteristics which will be reflected in its model.

1) Demand for the CCSN is generated by the voice network being served. In our example we will assume that the voice network has already been modeled, and quantities such as the trunk blocking probabilities and arrival rates of calls requiring each trunk can be obtained.
2) The network is large and heavily used by many different sources. As a result the dependence between servers is a secondary effect; (cf. Kelly [1986]) Thus, the signaling load generated by each trunk s modeled as independent from trunk to trunk.

a. An Example of a Signaling Network Model

For purposes of illustration we will consider a network containing three nodes: labeled 1, 2, 3 and connected as shown below.

Figure 1
We will consider calls for three source-destination pairs.

1	2	α_{12}
2	3	α_{23}
1	3	α_{13}

The routing for calls between source destination pairs is as follows: The calls for source-destination (s, d) pair $(1,2)$ can only use the trunk connecting 1 and 2 denoted $[1,2]$. The calls for (s, d) pair $(2,3)$ can only use the trunk connecting 2 and 3 , i.e. $[2,3]$. The calls for (s, d) pair $(1,3)$ have a preferred route using the trunk connecting 1 and $3,[1,3]$. If the trunk $[1,3]$ is blocked, the call will attempt to use an alternate route which consists of $[1,2]$ and $[2,3]$.

We will make the following assumptions concerning the CCSN.
(a) There is a signaling link for each trunk. The time required for a signaling operation is a random variable independent of the circuit switching congestion. In principle, this may be questionable, and is subject to change.
(b) The common channel signaling network for each node can be modeled as independent single servers.
(c) Each attempt for a call setup on a trunk between i and j (whether successful or not) generates a call setup service for the signaling servers at nodes i and j.
(d) When a call between a source-destination pair is completed, a call teardown service is required by the signaling server at each node along its route.

The signaling server at each node will be modeled using the M/G/1 queueing model of (2.31)-(2.34). This model will require the effective arrival rate of call setup attempts (whether or not successful) and the arrival rate of carried calls. It also requires a service time characterization; this is presumably the time for a packet to pass from the originating node to the next signaling node.

Let $B_{i j}$ be the probability that voice trunk $[i, j]$ is blocked. The arrival rates of call setup attempts is approximately computed as follows; cf. Kelly [1989].

Trunk Effective Arrival Rate of Call Setup Attempts
[1,2]
[2,3]
[1,3]
$e_{12}=\alpha_{12}+\alpha_{13} B_{13}$
$e_{23}=\alpha_{23}+\alpha_{13} B_{13}\left[1-B_{12}\right]$
$e_{13}=\alpha_{13}$

To explain e_{12}, note that the effective arrival rate of call setups on trunk [1,2] is the direct call rate α_{12}, plus the calls that attempt to go from 1 to 3 but are blocked, and hence rerouted on $[1,2]$. Likewise, e_{23} is the sum of the rate of outside calls attempting to access 3 from 2, plus the calls originating from 1 and intended for 3 that are blocked on [1,3] but not blocked on [1,2]. All other effective arrival rates are 0 . The arrival rate of carried calls to trunk $[i, j]$ is computed as follows

Trunk Arrival Rate of Carried Calls
[1,2]
[2,3]
[1,3]
$c_{12}=e_{12}\left[1-B_{12}\right]$
$c_{23}=e_{23}\left[1-B_{23}\right]$
$c_{13}=e_{13}\left[1-B_{13}\right]$

All other effective arrival rates are 0 .
The model for work at the signaling server at node i is an $M / G / 1$ queue with arrival rate

$$
\begin{equation*}
\xi_{i}=\sum_{j}\left(e_{i j}+c_{i j}\right)+\sum_{k}\left(e_{k i}+c_{k i}\right) \tag{4.1}
\end{equation*}
$$

where the summations are over all nodes j and k. The service time distribution is a mixture of distributions

$$
\begin{equation*}
P\left\{S_{i} \leq t\right\}=\frac{\sum_{j} e_{i j}+\sum_{k} e_{k i}}{\xi_{i}} \cdot P\{X \leq t\}+\frac{\sum_{j} c_{i j}+\sum_{k} c_{k i}}{\xi_{i}} \cdot P\{Y \leq t\} \tag{4.2}
\end{equation*}
$$

where X is the length of a call setup service and Y is the length of a call teardown service. If \bar{W}_{i} is the average delay at the signaling server at node i, then, by familiar M/G/1 formulas, see Kleinrock [1975],

$$
\begin{equation*}
\bar{W}_{i}=\frac{\xi_{i} E\left[S_{i}^{2}\right]}{2\left(1-\xi_{i} E\left[S_{i}\right]\right)} \quad \text { if } \xi_{i} E\left[S_{i}\right] \leq 1 . \tag{4.3}
\end{equation*}
$$

The expected delay on the signaling network for attempts to set up a call between a source-destination pair can now be computed. In what follows we will assume that a call setup attempt using trunk $[i, j]$ requires a service at the signaling server both nodes i and j with possible queueing at each node; the X-service at node i must be completed before the service at node j begins. This assumption can be modified for specific signaling network protocols. For example, a call from source 1 to destination 3 has an initial call setup service at nodes 1 and 3 ; if trunk $[1,3$] is blocked another call setup service is required at nodes 1 and 2; if trunk [1,2] is not blocked, then an additional call setup service is required at nodes 2 and 3 . Hence the expected delay on the signaling network for an attempt to set up a call from source 1 to destination 3 is

$$
\begin{align*}
E\left[D_{13}\right] & =\bar{W}_{1}+E[X]+\bar{W}_{3}+E[X]+B_{13}\left[\bar{W}_{1}+E[X]+\bar{W}_{2}+E[X]+\left[1-B_{12}\right]\left[\bar{W}_{2}+\bar{W}_{3}+2 E[X]\right]\right] \\
& =\bar{W}_{1}+\bar{W}_{3}+2 E[X]+B_{13}\left[\bar{W}_{1}+\bar{W}_{2}+2 E[X]+\left[1-B_{12}\right]\left[\bar{W}_{2}+\bar{W}_{3}+2 E[X]\right]\right] \tag{4.4}
\end{align*}
$$

The time to tear-down a call between 1 and 3 can also be computed. In what follows we will assume that a call tear-down using trunk $[i, j]$ requires a
Y-service at both node i and node j. For example a call from source 1 to destination 3 has a call tear-down service at nodes 1 and 3 with the conditional probability that the carried call used link [1,3]; this conditional probability is

$$
\begin{equation*}
\left[1-B_{13}\right]\left\{\left[1-B_{13}\right]+B_{13}\left[1-B_{12}\right]\left[1-B_{23}\right]\right\}^{-1} \equiv p_{1} . \tag{4.5}
\end{equation*}
$$

It has a tear-down service at nodes 1,2 , and 3 with the conditional probability that the call uses both trunks [1,2] and [1,3]; this conditional probability is

$$
\begin{equation*}
\left\{B_{13}\left[1-B_{12}\right]\left[1-B_{23}\right]\right\}\left\{\left[1-B_{13}\right]+B_{13}\left[1-B_{12} \|\left[1-B_{23}\right]\right\}^{-1} \equiv p_{2} .\right. \tag{4.6}
\end{equation*}
$$

Hence the expected delay tearing down a call on the signaling network is

$$
p_{1}\left[\bar{W}_{1}+\bar{W}_{3}+2 E[Y]\right]+p_{2}\left[\bar{W}_{1}+\bar{W}_{2}+\bar{W}_{3}+3 E[Y]\right]=\bar{W}_{1}+\bar{W}_{3}+p_{2}\left(\bar{W}_{2}+E[Y]\right)+2 E[Y] .
$$

5. CONCLUSION

In this paper we have considered several possible approaches to modeling a single server in a common channel signaling network. The modeling assumptions required by queueing network models with product form solutions appear restrictive. An $M / G / 1$ approximation to a more detailed model of work at a common channel server appears to be adequate for practical purposes. An approach to modeling a network of common channel servers is suggested.

REFERENCES

T. M. Apostol. Calculus, Vol. II, Second Edition, Wiley, New York, 1969.
F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios. "Open, closed, and mixed networks of customers," J. Assoc. Computing Machinery, 22, 1975, pp. 248-260.

CCITT Study Group XI, "Specifications of Signaling System No. 7, Red Book, Recommendations Q.706," Volume VI, Facicle VI.7, October 1984.

Defense Communications Agency. Circuit Switched Network Design/Analysis Model: Technical Reference/User's Manual. Task 89-32, 1989.
F. P. Kelly. "Blocking probabilities in large circuit-switched networks," Adv. Appl. Prob., 18 (1986), pp. 473-505.
F. P. Kelly, "Loss networks," Ann. Appl. Prob., 1 (1991) pp. 319-378.
L. Kleinrock. Queueing Systems, Vol I: Theory, Wiley, New York, 1975.
P. A. W. Lewis and L. Uribe," The new Naval Postgraduate School random number package-LLRANDOM II," Naval Postgraduate School Technical Report NPS55-81-005, Monterey, CA, 1981.
A. R. Modarressi and R. A. Skoog. "Signaling system No. 7: a tutorial," IEEE Communications Magazine, July 1990, pp. 19-35.

APPENDIX A

In this section we will describe the arguments leading to the expressions for $\sum_{n=1}^{K+1} b_{n}(0)$ and $d(0)$ in Section 3. For simplicity, we will illustrate them for the case $K=2$.

If $K=2$, then

$$
\begin{gather*}
D(\theta)=\left[\begin{array}{ccc}
\theta-\lambda & v \hat{Y}(\theta) & 0 \\
\lambda \hat{X}(\theta) & (\theta-(\lambda+v)) & 2 v \hat{Y}(\theta) \\
0 & \lambda \hat{X}(\theta) & (\theta-2 v)
\end{array}\right] ; \tag{A.1}\\
B_{1}(0)=\left[\begin{array}{ccc}
p_{0}(0) & v & 0 \\
p_{1}(0) & -(\lambda+v) & 2 v \\
p_{2}(0) & \lambda & -2 v
\end{array}\right] ; \tag{A.2}\\
B_{2}(0)=\left[\begin{array}{ccc}
-\lambda & p_{0}(0) & 0 \\
\lambda & p_{1}(0) & 2 v \\
0 & p_{2}(0) & -2 v
\end{array}\right] ; \tag{A.3}\\
B_{3}(0)=\left[\begin{array}{ccc}
-\lambda & v & p_{0}(0) \\
\lambda & -(\lambda+v) & p_{1}(0) \\
0 & \lambda & p_{2}(0)
\end{array}\right] ; \tag{A.4}
\end{gather*}
$$

Adding the first row of $B_{i}(0)$ to the second row and then adding the resulting second row to the third row results in the matrices

$$
B_{1}^{0}(0)=\left[\begin{array}{lll}
p_{0}(0) & v & 0 \tag{A.5}\\
p_{0}(0)+p_{1}(0) & -\lambda & 2 v \\
p_{0}(0)+p_{1}(0)+p_{2}(0) & 0 & 0
\end{array}\right]
$$

$$
\begin{align*}
& B_{2}^{0}(0)=\left[\begin{array}{lll}
-\lambda & p_{0}(0) & 0 \\
0 & p_{0}(0)+p_{1}(0) & 2 v \\
0 & p_{0}(0)+p_{1}(0)+p_{2}(0) & 0
\end{array}\right] \tag{A.6}\\
& B_{3}^{0}(0)=\left[\begin{array}{lll}
-\lambda & v & p_{0}(0) \\
0 & -\lambda & p_{0}(0)+p_{1}(0) \\
0 & 0 & p_{0}(0)+p_{1}(0)+p_{2}(0)
\end{array}\right] \tag{A.7}
\end{align*}
$$

Since $\operatorname{det} B_{i}(0)=\operatorname{det} B_{i}^{0}(0)$ and the minor of the entry $\sum_{i=0}^{2} p_{i}(0)$ is an upper diagonal matrix, it follows that

$$
\begin{equation*}
\sum_{n=1}^{3} b_{n}(0)=\left[\sum_{i=0}^{2} p_{i}(0)\right]\left[\lambda^{2}+2 \lambda v+2 v^{2}\right] \tag{A.8}
\end{equation*}
$$

To find an expression for $d(0)$, note that

$$
\begin{align*}
& d(0)=\left.\frac{d}{d \theta} \operatorname{det} D(\theta)\right|_{\theta=0} \\
& =\left.\sum_{i=1}^{3} \operatorname{det} D_{i}(\theta)\right|_{\theta=0} \tag{A.9}
\end{align*}
$$

where $D_{i}(\theta)$ is the matrix $D(\theta)$ with the same entries as $D(\theta)$ except that the $i^{\text {th }}$ row contains the derivatives of the functions of the $i^{\text {th }}$ row of $D(\theta)$;cf. Apostle [1969].

In the case of $K=2$

$$
D_{1}(0)=\left[\begin{array}{ccc}
1 & -v E[Y] & 0 \tag{A.10}\\
\lambda & -(\lambda+v) & 2 v \\
0 & \lambda & -2 v
\end{array}\right]
$$

$$
\begin{gather*}
D_{2}(0)=\left[\begin{array}{ccc}
-\lambda & v & 0 \\
-\lambda E[X] & 1 & -2 v E[Y] \\
0 & \lambda & -2 v
\end{array}\right] \tag{A.11}\\
D_{3}(0)=\left[\begin{array}{ccc}
-\lambda & v & 0 \\
\lambda & -(\lambda+v) & 2 v \\
0 & -\lambda E[X] & 1
\end{array}\right] \tag{A.12}\\
\begin{aligned}
& \operatorname{det} D_{1}(0)=1 \operatorname{det}\left[\begin{array}{cc}
-(\lambda+v) & 2 v \\
\lambda & -2 v
\end{array}\right]+v E[Y] \operatorname{det}\left[\begin{array}{ll}
\lambda & 2 v \\
0 & -2 v
\end{array}\right] \\
&=1 \operatorname{det}\left[\begin{array}{cc}
-v & 0 \\
\lambda & -2 v
\end{array}\right]+v E[Y] \operatorname{det}\left[\begin{array}{ll}
\lambda & 2 v \\
0 & -2 v
\end{array}\right] \\
&=1\left(2 v^{2}\right)+v E(Y)[-2 \lambda v] \\
& \operatorname{det} D_{2}(0)=\lambda E\left[X \left\lvert\, \operatorname{det}\left[\begin{array}{cc}
v & 0 \\
1 & -2 v
\end{array}\right]+1 \operatorname{det}\left[\begin{array}{cc}
-\lambda & 0 \\
0 & -2 v
\end{array}\right]+2 v E[Y] \operatorname{det}\left[\begin{array}{cc}
-\lambda & 0 \\
0 & \lambda
\end{array}\right]\right.\right. \\
&=-\lambda E[X]\left[2 v^{2}\right]+\lambda(2 v)-2 v E\left[Y \mid \lambda^{2}\right. \\
& \operatorname{det} D_{3}(0)= \lambda E[X] \operatorname{det}\left[\begin{array}{cc}
-\lambda & 0 \\
\lambda & 2 v
\end{array}\right]+1 \operatorname{det}\left[\begin{array}{cc}
-\lambda & v \\
\lambda & -(\lambda+v)
\end{array}\right] \\
&= \lambda E[X] \operatorname{det}\left[\begin{array}{cc}
-\lambda & 0 \\
\lambda & 2 v
\end{array}\right]+1 \operatorname{det}\left[\begin{array}{cc}
-\lambda & v \\
\lambda & -\lambda
\end{array}\right] \\
&= \lambda E[X][-2 \lambda v]+\lambda^{2}
\end{aligned}
\end{gather*}
$$

Thus

$$
\begin{align*}
d(0) & =\sum_{i=1}^{3} \operatorname{det} D_{i}(0) \\
& =\lambda^{2}+2 v \lambda+2 v^{2}-\lambda E[X]\left[2 \lambda v+2 v^{2}\right] \cdot v E[Y]\left[2 \lambda v+2 \lambda^{2}\right] \tag{A.16}
\end{align*}
$$

APPENDIX B. THE DEFENSE COMMUNICATIONS AGENCY CIRCUIT SWITCHED NETWORK DESIGN/ANALYSIS MODEL (CSNDAM)

The Defense Communications Agency is currently using a computer model called the CSNDAM (Circuit Switched Network Design/Analysis Model) "to design and maintain optimal cost-effective circuit switched networks"; cf. Defense Communications Agency [1989].

The CSNDAM can be used to model traffic on a voice network. This model for a voice network could then be used to generate demand in a model for the common channel signaling network as outlined in Section 4. In this appendix we discuss two issues concerning using the CSNDAM to model the voice network which generates demand on a common channel signaling network.

The first issue is minor. The CSNDAM model output is in terms of load measured in Erlangs. Thus, to obtain arrival rates, the loads must be divided by the expected call holding time. For example, if $\frac{1}{v}$ is the expected call holding time and $a_{i j}$ is the CSNDAM computed offered load (in Erlangs) on trunk $[i, j]$, then $a_{i j} v$ is part of the call setup arrival rate for nodes i and j.

The second issue is more important. In its computation of offered load, CSNDAM subtracts load on a link due to calls that unsuccessfully attempt to use that link for part of their path from source to destination. However, a signal is generated on the common channel signaling network even if a call set up attempt is unsuccessful. Hence, the arrival rate of call set up signals for node i not only involves the offered load for all traffic passing through node i
but also the load through node i generated by calls that unsuccessfully attempt to use a path through node i. Thus, it appears that in order to use the CSNDAM model to generate demand for the common channel signaling network, the CSNDAM model would have to be modified to calculate the load on the signaling network due to lost calls.

INITIAL DISTRIBUTION LIST

1. Library (Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5000
2. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314
3. Office of Research Administration (Code 08) 1
Naval Postgraduate School
Monterey, CA 93943-5000
4. Prof. Peter Purdue 1
Code OR-Pd
Naval Postgraduate School
Monterey, CA 93943-5000
5. Prof. Michael Bailey 1
Code OR-Ba
Naval Postgraduate School
Monterey, CA 93943-5000
6. Department of Operations Research (Code 55) 1
Naval Postgraduate School
Monterey, CA 93943-5000
7. Prof. Donald Gaver, Code OR-Gv 10
Naval Postgraduate School
Monterey, CA 93943-5000
8. Prof. Patricia Jacobs 10
Code OR/Jc
Naval Postgraduate School
Monterey, CA 93943-5000
9. Center for Naval Analyses 1
4401 Ford Avenue Alexandria, VA 22302-0268
10. Prof. Maria Rieders 1
Dept. of Industrial Eng
Northwestern Univ. Evanston, IL 60208
11. Prof. Carl Jones 1
C^{3} I Academic Group Naval Postgraduate School
Monterey, CA 93943-5000
12. Dr. David Brillinger 1
Statistics Department University of California Berkeley, CA 94720
13. Prof. Bernard Harris 1
Dept. of Statistics
University of Wisconsin
610 Walnut Street
Madison, WI 53706
14. Prof. W. R. Schucany 1
Dept. of Statistics Southern Methodist University Dallas, TX 75222
15. Prof. D. C. Siegmund 1
Dept. of Statistics Sequoia Hall
Stanford University
Stanford, CA 94305
16. Prof. H. Solomon 1
Department of Statistics Sequoia Hall
Stanford University Stanford, CA 94305
17. Dr. Ed Wegman 1
George Mason University Fairfax, VA 22030
18. Dr. P. Welch 1
IBM Research Laboratory Yorktown Heights, NY 10598
19. Dr. Neil Gerr 1
Office of Naval Research
Arlington, VA 22217
20. Prof. Roy Welsch 1
Sloan School
M.I.T.
Cambridge, MA 02139
21. Dr. J. Abrahams, Code 1111, Room 607 1
Mathematical Sciences Division, Office of Naval Research 800 North Quincy Street
Arlington, VA 22217-5000
22. Prof. J. R. Thompson 1
Dept. of Mathematical Science Rice University
Houston, TX 77001
23. Dr. P. Heidelberger 1
IBM Research Laboratory
Yorktown Heights
New York, NY 10598
24. Prof. M. Leadbetter 1
Department of Statistics
University of North Carolina
Chapel Hill, NC 27514
25. Prof. D. L. Iglehart 1
Dept. of Operations Research
Stanford University
Stanford, CA 94350
26. Prof. J. B. Kadane 1
Dept. of Statistics
Carnegie-Mellon University Pittsburgh, PA 15213
27. Prof. J. Lehoczky 1
Department of Statistics
Carnegie-Mellon University Pittsburgh, PA 15213
28. Prof. M. Mazumdar 1
Dept. of Industrial Engineering
University of Pittsburgh
Pittsburgh, PA 15235
29. Prof. M. Rosenblatt 1
Department of Mathematics
University of California, San Diego
La Jolla, CA 92093
30. Prof. H. Chernoff 1
Department of Statistics
Harvard University
1 Oxford Street
Cambridge, MA 02138
31. Dr. T. J. Ott. 1
Bellcore,
445 South Street
Morristown, NJ 07962-1910
(MRE 2P388)
32. Dr. Alan Weiss 1
Rm. 2C-118
AT\&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974-2040
33. Dr. Martin Reiman 1
Rm \#2C-117
AT\&T Bell labs
600 Mountain Ave.
Murray Hill, NJ 07974-2040
34. Prof. Frank Samaniego 1
Statistics Department
University of California
Davis, CA 95616
35. Dr. James McKenna 1
Bell Communications Research
445 South Street
Morristown, NJ 07960-1910
36. Dr. Shlomo Halfin 1
Bellcore,
445 South Street
Morristown, NJ 07962-1910
(MRE 2L309)
37. Dr. John Orav 1
Biostatistics Department
Harvard School of Public Health 677 Huntington Ave.
Boston, MA 02115
38. Prof. R. Douglas Martin 1
Department of Statistics, GN-22
University of Washington
Seattle, WA 98195
39. Prof. N. D. Singpurwalla 1
George Washington University Washington, DC 20052
40. Prof. George S. Fishman 1
Curr. in OR \& Systems Analysis
University of North Carolina
Chapel Hill, NC 20742
41. Prof. Bradley Efron 1
Statistics Dept.
Sequoia Hall
Stanford University
Stanford, CA 94305
42. Dr. John E. Rolph 1
RAND Corporation
1700 Main St.
Santa Monica, CA 90406
43. Prof. Linda V. Green 1
Graduate School of Business
Columbia University
New York, NY 10027
44. Dr. David Burman 1
AT\&T Bell Telephone Laboratories 600 Mountain Avenue
Murray Hill, NJ 07974
45. Dr. Edward G. Coffman, Jr. 1
AT\&T Bell Telephone Laboratories 600 Mountain Avenue Murray Hill, NJ 07974
46. Prof. William Jewell 1
Operations Research Department
University of California, Berkeley Berkeley, CA 94720
47. Operations Research Center, Rm E40-1641
Massachusetts Institute of Technology
Attn: R. C. Larson and J. F. Shapiro Cambridge, MA 02139
48. Arthur P. Hurter, Jr. 1
Professor and Chairman
Dept. of Industrial Engineering and Management Sciences
Northwestern University
Evanston, IL 60201-9990
49. Institute for Defense Analysis 1
1800 North Beauregard
Alexandria, VA 22311
50. Prof. J. W. Tukey 1
Statistics Dept., Fine Hall
Princeton University
Princeton, NJ 08540
51. Dr. Daniel H. Wagner 1
Station Square One Paoli, PA 19301
52. Dr. Colin Mallows 1
AT\&T Bell Telephone Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974
53. Dr. Jon Kettenring 1
Bellcore
445 South Street
Morris Township, NJ 07962-1910
54. Dr. S. R. Dalal 1
Bellcore
445 South StreetMorristown, NJ 07962-1910
55. Dr. M. J. Fischer 5
Defense Communications Agency
Reston, VA 22070
56. Dr. Prabha Kumar
Defense Communications Agency 1
Reston, VA 22070
57. Dr. B. Doshi 1
AT\&T Bell Laboratories
HO 3M-335
Holmdel, NJ 07733
58. Dr. D. M. Lucantoni 1
AT\&T Bell Laboratories
Holmdel, NJ 07733
59. Dr. V. Ramaswami 1
MRE 2Q-358
Bell Communications Research, Inc.
445 South Street
Morristown, NJ 07960
60. Prof. G. Shantikumar 1
The Management Science Group
School of Business Administration
University of California
Berkeley, CA 94720
61. Dr. D. F. Daley 1
Statistic Dept. (I.A.S.)
Australian National University
Canberra, A.C.T. 2606
AUSTRALIA
62. Dr. Guy Fayolle 1
I.N.R.I.A.
Dom de Voluceau-Rocquencourt
78150 Le Chesnay CedexFRANCE
63. Professor H. G. Daellenbach 1
Department of Operations Research
University of Canterbury
Christchurch, NEW ZEALAND
64. Koh Peng Kong 1
OA Branch, DSO
Ministry of Defense
Blk 29 Middlesex Road SINGAPORE 1024
65. Professor Sir David Cox 1
Nuffield College
Oxford, OXI INF
ENGLAND
66. Dr. A. J. Lawrence 1
Dept. of Mathematics, University of Birmingham
P. O. Box 363
Birmingham B15 2TT
ENGLAND
67. Dr. F. P. Kelly. 1
Statistics Laboratory
16 Mill Lane
Cambridge
ENGLAND
68. Dr. R. J. Gibbens 1
Statistics Laboratory
16 Mill Lane
Cambridge
ENGLAND
69. Dr. D. Vere-Jones 1
Dept. of Math, Victoria Univ. of Wellington
P. O. Box 196
Wellington
NEW ZEALAND

32768003371923

